Chapter 1

Word Sense Disambiguation: Literature
Survey (June 2012)

In this chapter, we provide a brief overview of the existingrikvon WSD examined
between December 2009 and May 2012. Since our work is foousékde unsupervised
techniques, the notable unsupervised approaches are simedia the end.

1.1 Supervised Algorithms

In the last two decades, the NLP community has witnessedaeasing interest in ma-
chine learning based approaches for automated classficatiword senses. This is
evident from the number of supervised WSD approaches thvat $yzawned. Today, the
supervised approaches for WSD possibly are the largest euaitalgorithms, used for
disambiguation. Supervised WSD uses machine learningigeés on a sense-annotated
data set to classify the senses of the words. There are a nawhtlassifiers also called
word experts that assign or classify an appropriate senae tiostance of a single word.
The training set for these algorithms consist of a set of gtas) where the target word
is manually tagged with sense from a reference dictionatye Jupervised algorithms
thus perform target-word WSD. Each algorithm uses ceratuires associated with a
sense for training. This very fact forms the common threadoétionality of supervised
algorithms. In this section we will discuss the notable suiged algorithms for sense
disambiguation in the literature.

1.1.1 Decision Lists

The decision lists, first described by Rivest (1987) are aoketiles in an ordered list
format. A decision list is a set of weightatithen-elserules. It was first used by
Yarowsky (1994) on th&ensevatorpus. It is one of the most efficient supervised al-
gorithms. First, the features are extracted from the setamfihg examples, which in
this case is the training corpus. This is followed by theitgsphase, where the WSD
algorithm is run. This is based on a probabilistic measure.
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1.1.1.1 Feature Extraction

The feature extraction phase is the training phase of tigsrithm. The features are
extracted and stored in a table in an ordered list format.nSsdagged corpus is taken as
a knowledge source. The feature vector for each word w ha®lloeving features in it:

» Part-Of-Speech (POS) of w
« Semantic & Syntactic features of w

* Collocation vector (set of words around it) - typically sists of next word (+1),
next-to-next word (+2), -2, -1 & their POS’s.

» Co-occurrence vector - number of times w occurs in bag ofiwaround it.

The method is based ddne sense per collocatigroperty, which states that the nearby
words provide strong and consistent clues as to the senseujet word.

1.1.1.2 Generation of Decision Lists

Once the features are obtained from the corpus, rules ofotime (feature value, sense,
score)are created. These rules are embedded into a table, ond@mtigch sense. This
table is then sorted in decreasing order of scores. Thetagswata structure,e., the
sorted table is the decision list. The next question thataris how to calculate a score
for a sense, given its features. Each sense has a featuoe gentprising of a number
of features, as shown earlier. The task is to find the featutbd feature vector, which
contributes most to the appropriateness of the sense. Bottlile score of the features
needs to be calculated and the maximum feature score carbt@asshe sense score and
is denoted aScor€S).

1.1.1.3 TheWSD algorithm

Given a word w to be disambiguated along with its feature aredhe decision list is
scanned for the entries that match the input vector. Theeseith the maximum score
among the entries becomes the winner sense. Formulatirapthe we have:

S= argma>§€Sensegv)ScorQS)

Where:
S= A candidate sense.
D = A reference Dictionary.

1.1.2 Decision Trees

The decision tree (Quinlan, 1986) is a prediction based moblee knowledge source
used for the decision tree is a sense-tagged corpus, on Wiednaining is done. The
classification rules in case of decision tree are in the fofryes-norules. Using these
rules the training data set is recursively partitioned. @heision tree has the following
characteristics:



» Each internal node represents a feature, on which a teshtucted.

» Each branch represents a feature value, or an outcome tdghen the feature in
the internal node.

» Each leaf node represents a sense or a class.

The feature vector used in the case of decision tree, is the sa that of decision list.
The feature vector for each word w has the following featumet

 Part-Of-Speech (POSff w
e Semantic & Syntactic featusef w

» Collocation vector(set of words around it) - typically consists of next word J;+1
next-to-next word (+2), -2, -1 & their POS'’s.

» Co-occurrence vectornumber of times w occurs in bag of words around it.

1.1.2.1 Generation of Decision Tree

Once the features of the sense are in place, the decisiois yeaerated using ID3, 1D4,
ID5 or, ID5R algorithms. The basic one among these algostisrthe ID3 algorithm,
which is similar to the C4.5 algorithm due to Quinlan (198Bhe ID3 algorithm can be
stated as follows:

« If all the instances are from exactly one class, create fanlede containing that
class name.

* Else, for each node, find the feature with least Entropyevalud grow the sub-trees
recursively using values of that attribute.

1.1.22 TheWSD algorithm

Once a word w is up for disambiguation, along with its featugetor, using the already
gathered training information, the decision tree is tragdrto reach &eaf node. The
sense contained in the leaf node giveswlmner sense

1.1.3 Neural Networks

A Neural Network described by (Rumelhart et al., 1994), (&agt al., 1996) is an in-
terconnection of artificial neurons, used for classificatad patterns (data), based on
a connectionist approach. There are many kinds of neuralanks, like perceptrons,
feed-forward, recurrent networks. The neural networksldseWSD purpose are: Per-
ceptrons usingdidden Markov Mode{HMM) and Back propagatiorbased feed forward
networks. In case of WSD using Perceptron trained HMM, theD/p8blem is treated
as a sequence labeling task. The class space is reducedgysugier senses instead of
actual senses from the WordNet. The HMM is trained usingdlewing features:

* POS of w.
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Figure 1.1: An example of Decision Tree

* POS of neighboring words.
* Local collocations.

» Shape of the word and neighboring words.

Example:
For s =Merrill Lynch & Co shapés) =Xxx Xxx & Xx
This method is useful for Named entity recognition, as lallige person location, time,
etc are included in the super sense tag set. The other type adlnetwork that is used
for WSD purpose is the feed-forward network. This networksists of three layers of
neurons, namely Input layer, Hidden layer and Output laybe feed-forward network,
trains by learning the weights of the connections and thestiold values of the hidden
layer and output layer neurons. It takes the feature vestam@ut. The number of input
layer neurons, depends on the size of the feature vaaqgrpne input neuron for each
feature. The inputs though are binary. During testing, miae¢arget wordv, and its set
of features, the inputs for the features present in the featector are set to 1, rest to O.
Correspondingly a neuron in the output layer fires. Eachudugyer neuron corresponds
to a sense ofv. The sense associated with the neuron that fired becomesithengense.

1.1.4 Exemplar/Memory Based L earning

Exemplar based (or instance based or memory based) leaidmd.997) is based on
learning from examples. The model stores the examples asspai the feature space.
It is called memory based, because as new examples are auelednodels are not
created, rather they are progressively added to the eyistwdel. The most commonly
used method for this approach is tkearest NeighbofkNN) method. It is one of the
best performing methods in WSD.

In KNN method, a new example is classified based onkihmost similar examples
that were stored earlier. Formally, a new example say (wl,w2,...,wn) which is
expressed in terms of features is classified by the clos&steighbors. The closeness is
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Figure 1.2: An example of feed-forward network for WSD (Fgucourtesy
Hagan et al. (1996))

mathematically computed by the distaneay, theHamming distance

6(X57Xj> - Zgnzla(xivxn

where:

w;j : weight of thej'" feature.

Xi = (X, Xy, ---, Xipy) - @ previously stored example.
d(xi,Xj) = 0if x; =x and = 1 otherwise.

The set ofk closest instances is derived to form a set G&ysest. The new example
belongs to that class(sense) which has the largest numipeembers irClosest, i.e., x
belongs to that class that has the highest number of neiglabzr

1.1.4.1 Determining the weights

w;j and the value ok is determined experimentally. Feature weighifscan be estimated,
e.g, with the gain ratio measure Complex metrics, like thenodifed value difference
metric can be used to calculate graded distances between featuesybut usually they
are computationally more expensive.

1.1.5 Ensemble Methods

Since a lot of work has gone into supervised approaches fdd Vi8d there are a lot of
supervised algorithms for sense disambiguation todayn@bowation of such strategies
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new instance

Figure 1.3: An example of kNN on 2D plane (Figure courtesy NeQ())

could result in a highly efficient supervised approach angrove the overall accuracy
of the WSD process. Features should actually be chosen seigimficantly different,
possibly independent, views of the training daay( lexical, grammatical, semantic fea-
tures,etc) are formed. These combination strategies are called ésleamethods. One
of the cheif ensemble methods is majority voting, descriibddw. The ensemble strategy
that has highest accuracy is the AdaBoost method.

1151 Magority Voting

In the majority voting scheme, each classifier votes for aiqdar sense of the given
word w. A classifier votes for a senSgof the word w, if that sense is the output, or the
winner sense for that classifier. The sense with the majofityptes becomes the winner
sense for this method. Formally, given w, the senses$famd the ensemble components
C;. The winner sensSis found out by the formula:

S= argmag csenses(w) |j :votgCj) = S|

If there is a tie, then a random choice is made among the weameses or the ensemble
does not output anything.

1.15.2 AdaBoost

Adaboost is a theoretical framework of a machine learninglehaalled Probably
Approximately Correc(PAC). The method is sensitive to noisy data and outliers, an
is consequently less susceptible to overfitting than othechime learning approaches.
AdaBoost orAdaptive BoostingMargineantu and Dietterich, 1997) constructsteng
classifier by taking a linear combination of a numbenafakclassifiers. The method is
called Adaptive because it tunes classifiers to correcgsify instances misclassified
by previous classifiers.



For learning purposes, instances in the training data seequally weighted initially.
AdaBoost learns from this weighted training data set. Roensemble components,it
iteratesm times, one iteration for each classifier. In each iterattbe, weights of the
misclassified instances are increased, thus reducingotkeal | cl assification
error.

As a result of this method, after each iteratipa- 1,...,m a weighta; is obtained for
each classifieC;, which is a function of the classification error Gy, over the training
set. Given the classifie;,Cy, ...,Cqy the attempt is to improvej which is the weight or
importance of each classifier. The resultsinbngclassifier H can thus be formulated as:

H(x) = sign(Z{L,a;C;j(x))

This indicated thaH is the sign function of a linear combination of theakclassifiers.
An extension of AdaBoost which deals with multiclass, nialiel classification is Ad-
aBoost.MH as demonstrated by Abney et al. (1999). An apjpdicaf AdaBoost called
LazyBoostingvas also used by Escudero et al. (2001). LazyBoosting isygabg Ad-
aBoost used for WSD purpose.

1.1.6 Support Vector Machines

Support Vector Machines were introduced by Hearst et ab&)L% based on the idea of
learning ahyperplanefrom a set of the training data. The hyperplane separatafiyi
and negative examples. The hyperplane is located in ther$iypee, such that it max-
imizes the distance between the closest positive and negatamples (calledupport
vectorg. The SVM thus minimizes thel assi fi cati on error and maximizes the ge-
ometric distance or margin between the positive and negiakti@mples. The linear SVM
is characterized by two parameters:

» w, which is the vector perpendicular to the hyperplane.

* b, the bias which is the offset of the hyperplane from the arigi

An instance is labeled as positive if the valifex) = w.x+ b > 0 and negative otherwise.
Figure 1.1.6 shows the support vectors and the separatipgripiane along with w and
b. This can thus be well understood from the geometric ilmtnias shown here. SVM
is a binary classifier, but WSD is a multiclass problem, asetlean be more then two
senses(classes) for a word. To make it usable for WSD, tH#garocan be broken down
into a number of binary class problems.

This can be done by taking each sense as one class and thairegnsgnses as another
class. This is done for all the senses. The sense with thenmiaxiconfidence score is
taken as the winner sense. The confidence score is actualsathe off (x)[w.x+ b], for
each SVM.
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Figure 1.4: The geometric intuition of SVM (Figure courté$garst et al. (1998))

1.1.7 SNoW Architecture

Snow stands foSparse Network Of Winnows, which is an online learning algorithm.
The fundamental construct of the algorithm is WW@now algorithmBlum, 1995). The
algorithm learns very fast in the presence of many binarytripatures, as it consists
of a linear threshold algorithm and updates multiplicatxegght for problems having 2
classes (Carlson et al., 1999).

Each class in the SNoW architecture has a winnow node, wiliams$ to separate
that class from the remaining classes. During training,nifexample belongs to the
corresponding class, then it is considered positive forwirenow node, else it is a
negative example. The nodes are not connected to all fsatather they are connected
to “relevant” features for their class only. This accounts for the fastnlieg rate of
SNoW.

When classifying a new example, SNoW behaves somewhat likeugal net, which
takes features as input and outputs the class with the hightgation value. According
to Blum (1995), SNoW performs well in higher dimensional égons. Both the target
function and the training instances are sparsely disetbut the feature space,g, text
categorization, context sensitive spelling correctiorgDYetc.
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1.2 Semi-supervised Algorithms

Supervised algorithms train a model based on the annotatpd< provided to it. This
corpus needs to be manually annotated, and the size of tippicoieeds to be large
enough in order to train a generalized model.

Semi-supervised, also known asnimally supervised algorithms make some assump-
tions about the language and discourse in order to mininfizee restrictions. The
common thread of operation of these algorithms are th@ssunpt i ons and theseeds
used by them for disambiguation purposes.

This section presents two such approaches, based on tveoediffways to look at the
problem, namely Bootstrapping and Monosemous Relatives.

1.2.1 Bootstrapping

This algorithm, devised by Yarowsky (1992), is based on Waiy’s supervised algo-
rithm that uses Decision Lists. As mentioned earlier, tlgoaihm makes a couple of
assumptions regarding the language. The assumptions cdatbd as follows:

* One sense per Collocation - The sense of a word is strongly dependent on the
neighboring words.

» One sense per Discourse - Every document contains a single sense of a word with
high probability.

It can be seen that these assumptions are very strong, asdtitbumodel building
phase becomes quite small compared to the supervised aradbthis algorithm. With
these assumptions, the algorithm first identifies a set al sewds, which can act as
disambiguating words. A Decision List is built based on #eed data. Next, the entire
sample set is classified using the Decision list generaiadqisly.

Using this decision list, as many new words as possible assifled in order to iden-
tify their senses. Using these words along with their ideattisenses, new seed data is
generated. The same steps are repeated until the outp@rgeswp to a threshold value.

1.2.2 Monosemous Relatives

With exponential growth of thevorld wide web approaches are being tried out which
can use the vast collection of words as corpus. This enabéealgorithms to have an
automatically annotated corpus, which has tremendougjg Bize, theveb corpus
Monosemous relatives approach is developed as a bootstgagigorithm to use words
with single sense as possible synonyms. For this, througlsyhset of a wordv, all
words having single sense (the sens&vatself) are found. For each wordssthis set, a
web search is done and contexts are found. These contexd&r@ctly sense annotated
with sense of wordv. A small variant here is to createpic signaturegontaining closely
related words associated with each word sense. A manua&gatiep is necessary for such
approaches.



Residual data

Life Manufacturing

(a)

Figure 1.5: figure showing growth of Semi-supervised deaisist on two senses of plant
viz., life and manufacturing. (a) The initial seed data. (b)v&toof the seed set. (c) Seed
data converges. (Figure courtesy Yarowsky (1992))

1.3 Unsupervised algorithms

A Supervised approach in WSD needs training data on whichuiid® models or
hypotheses. The training data has to be manually creatadhugwery expensive, both
temporally and financially. This problem is typically knows Knowledgeacquisition
bottleneck. Unsupervised algorithms overcome this probley assuming that the
sense of a word will depend on those of neighboring words. 3ihgle common
thread which binds these algorithms is thl®ustering strategy used on the words
the un-annotated corpus. The words are then classified inéood these clusters
based on some similarity measure. These algorithms areftinertermed as\Vord
sense discrimination algorithmsather than disambiguation algorithms.  Although
they do not end up finding the actual sense of a word, the clngtend classification
enables one to label the senses, and therefore these apgs@ae treated as part of WSD.

Since the sense clusters derived by these algorithms magnatah the actual senses
defined in Lexical resources like dictionaries, the evadunabf these algorithms needs
to be carried out manually, by asking language experts tmborate the results. Based
on thetype of clustering performeloly unsupervised algorithms, they can be classified as
follows:

1.3.1 Context clustering algorithms

Context is formally a discourse that surrounds a languag€ eug. a word) and helps to
determine its interpretation. The algorithms in this dama&present the occurrences of
target words as word vectors. From these vectors, contetdngeare formed and meaning
similarity is found that is a function of cosine between tbatext vectors:
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Schiitze (1992) formulated a way to represent the vectaespih words as dimensions.
Arbitrary words can be chosen as axes, and the words in thpusaan be vectorized
based on the counts of co-occurrences of these words with ebthe axes. The
occurrence of every word within a window sizelois counted.

The following example shows axes as bank and house, withotiext words for interest
(X1, Y1), money ko, y2), deposits X3, y3), and door X4, Y4). The number in the bracket
show the number of times a word occurs with hougednd with bank ;) respectively.
The words with cosine value of 0 are treated as completelglatad, whereas, the ones
with value 1 are termed synonymous and so on.
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Figure 1.6: An example of word vectors and context vectorstock, calculated as the
centroid (or the sum) of the vectors of words occurring ingame context

1.3.1.1 Latent Semantic Analysis

The number of dimensions in the above approach could readb apfew thousands,
and Singular Value Decomposition (SVD) is used to reducetheber of dimensions to
around 100. This is done by computing:

M=UxV*

where, M is the m-by-n feature matrix, U is an m-by-m unitagtnx over K, the matrix
> is m-by-n diagonal matrix with nonnegative real numbers lom diagonal, an&/*
denotes the conjugate transpose of V. The diagonal entrieatie known as the singular
values of M.

Since the original dimensions are largely dependent on etwdr, and can be approxi-
mated as a linear combination of many of the other, the dimasgeferring to similar
meanings can be merged.

The same procedure as mentioned above is applied to find ordswaeith similar
meaning. In order to cluster the context words, a contextovas built as the centroid
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of the word vectors which were found in the target context.e Tentroid finds the

approximation of semantic context. It can be seen that thé@ed vector is a second
order vector, as it does not represent the context dirdctiyre above figure, the centroid
vector is shown for 3 wordeiz., interest, money, and deposits.

1.3.1.2 Context Group Discrimination

This algorithm, which is due to Schitze (1992), goes onp ateead to discriminate
the word senses after their context vectors are formed. dlgrithm was developed
to cluster the senses of the words for which ambiguity is gresn the corpus. The
algorithm represents senses, words, and context in a diaiensional real-valued vector
space.

The clustering is done based on contextual similaritiesvéen the occurrences. The
contextual similarities are still found with cosine furmstj but the clustering is done using
Expectation Maximization algorithm, an iterative, proliabc model for maximum
likelihood estimation.

In the sense acquisition phase, the contexts of all the ceoces of the ambiguous
words are represented as context vectors as explaine@reahd a method called
average agglomerative clustering is used. The similasityalculated as a function of
number of neighbors common to the words. The more similade/appear in the two
contexts, more similar the contexts become. After this,ab&urrences are grouped so
that occurrences with similar contexts are assigned to stuster.

A very similar approach is followed in Structural Semantiterconnections (hybrid al-
gorithm).

1.3.2 Word Clustering Approaches

Context vectors previously explained, are second-ord@resentations of word
senses, as in they represent the senses indirectly. Thénéleas to cluster the senses
based on word vectors, in order to draw out the semantidoaktiips between the words.

The notable algorithms in this section are:

1.3.2.1 Lin’sapproach

Lin (1998) clusters two words if they share some syntactlati@ship. More the
relation, more close the words are situated in the clusteerGontext wordsvy, wy, - - -

W, and a target word w, the similarity between w amds determined by the information
content of their syntactic features.

The previous approach uses context vectors, which conigises of words, and thus,
similarity of w with eachw; can not be determined with that approach. Therefore, each
word is represented in form of a vector. The information eotg are then found out
using the syntactic features as mentioned previously.
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Example:

The facility will employ 500 new employees.

Here, the wordacility is to be disambiguated (discriminated). From the corpussjrih
formation content of each subject of employ is determinetgims of thdog likelihood
Since the sense afistallationfor facility has highest similarity with the major four sub-
jects ofemploy(viz., org, plant, company, industry), it becomes the winnessen

Senses of Facility Subjects of Employ
installation word freq | log likelihood
proficiency org 64 | 51.7
adeptness plant 14 | 33.0
readiness company | 27 | 29.9
bathroom/toilet industry | 9 15.4

In this case Sense 1 of installatiprunit 9 10.2

would be the winner sense. aerospace 2 6.3

Table 1.1: Table showing working of Lin’s approach. The wvansense is highlighted.

1.3.2.2 Clustering by Committee

This algorithm, again proposed by Pantel and Lin (2002),lmariewed as an extension
over Lin’s original approach to WSD discussed previouslisTalgorithm follows the
same steps up to representing the words as a feature vector.

After this, the algorithm recursively decides the clustee$erred to here asommittees
Given a set of word&V, the algorithm usegaverage link methodo cluster the words.
In each step, the words are clustered based on their sityitarithe centroids of the
committees, and the words which are not similar are gathérbdse words, referred to
here agesidue wordsare used to discover more committees.

While disambiguating a word,, the word is represented using its feature vector and the
most similar committee is found for this word.
The algorithm can be summarized as below:

1. Find K nearest neighbors (kNN) for each el ement,
for some small value of K.

2. Formclusters using the kNN obtained fromstep 1.

3. For every new instance e input to the system
assign it toits nearest cluster, as per average
l'ink method.

Typically, the value ok is selected to be between 10 and 20. The elements of eacbrclust
are called &ommittee
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1.3.3 Co-occurrence Graphs

Whereas the previous techniques use vectors to represemdius, the algorithms in
this domain make use of graphs. Every word in the text becamnestex and syntactic
relations become edges. The context urgtg).( paragraph) in which the target words
occur, are used to create the graphs.

The algorithm worth mentioning here is Hyperlex, as propdseVeronis (2004).

1.3.3.1 Hyperlex

As per this algorithm, the words in context.§. in the same paragraph) with the target
word become vertices, and they are joined with an edge, ¥ tteeoccur in same
paragraph. The edge weights are inversely proportionagtdérequency of co-occurrence
of these words.

Wi = 1 - max{P(w;|w;), P(w;jw;)}

) \ __ Frequency of ceoccurrence of wordsyand w,
where,P(w; | wj) = Freguency of occurrence of;w
It can be seen that as an implication, words which co-occthr igh frequency, get an

edge weight of close to 0 and the other extreme gets 1.

target word

hubs

descendants

cocktail 0.03 cocktail

chocolate

Figure 1.7: Hyperlex showing (a) Part of a co-occurrencelgrgb) The minimum span-
ning tree for the target wordar. (Figure courtesy Navigli (February 2009))

After this is done, iteratively the node with highest ratatdegree (number of connec-
tions) in the graph is selected as a hub. Once this is donedighbors of this node
cease to be candidates of being hubs. The relative degreenf@ining nodes is again
computed and this is iterated until the highest relativerelegeaches some predefined
threshold. The hubs are then linked to the ambiguous word rinly Minimum
Spanning Tree (MST) for the resultant graph.

Each node in the MST is assigned a score vector s with as mamgngions as there are
components:
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1 . .
< Tra(Ry) If ve componenti

0 otherwise
whered(h; ) is the distance between root hiztand noder in the tree. The score vectors
of all words are added for the given context. The componettit nghest score becomes
the winner sense.

1.3.4 WSD using parallel corpora

It was experimentally found out that, words in one languagech have multiple mean-
ings, have distinct translations in some other languagas d$sumption is utilized by
Ide et al. (2002) in an algorithm for disambiguation. Theoailitpm was designed with
the aim of obtaining large sense marked corpus automatiaatlotated with high effi-
ciency.

For this purpose, the algorithm needs raw corpus from mae tne language (hence
the name parallel corpora). For determining the numberutels, the algorithm uses a
minimum distance computed using:

V2t (va(i) —va(i)?

where,v1 andv, are vectors of length n.

The algorithm creates 2 generative models to group and aehamodel the senses of
two languages. The first model, referred toSense modglgroups the words as per
senses, irrespective of their language. The second madeired to aConcept model
groups the senses as per their concepts, across both thedmsy

Concept

Sense

Figure 1.8: Figure showing the (a) Sense model and (b) Comeegel (Figure based on
works by Ide et al. (2002))

1.3.5 WSD using Roget’s Thesaur us categories

Roget’s thesaurus is an early Nineteenth century thesamuhich provides classifica-
tion or categories which are approximations of conceptiedses. This algorithm by
Yarowsky (1992) uses precisely this ability of Roget’s thesis to discriminate between
the senses using statistical models. The algorithms obséoliowing:
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« Different conceptual classes of words tend to appear ingeizably different con-
texts.

« Different word senses belong to different conceptualsegas

» A context based discriminator for the conceptual classesserve as a context
based discriminator for the members of those classes.

The algorithm thus identifies salient words in the collezitontext of the thesaurus cat-
egory and weighs them appropriately. It then predicts the@piate category for an
ambiguous word using the weights of words in its context. pitegliction is done using:

argmax I Pr(w|RCat)+Pr(RCat)
RCat w e context 109 ( Pr(w) )

where,RCatis the Roger’s thesaurus category.

The following table shows the implementation of Yarowskglgorithm on the target
word crane A crane might mean a machine operated for constructiongsarpRoget’s
category of TOOLS/MACHINE) or a bird (Roget’s category of ARAL/INSECT). By
finding the context words for word crane and finding how muclghie(similarity) they
impose on each sense of crane, the winner sense is selected.

TOOLS/MACHINE | Weight| ANIMAL/INSECT | Weight
lift 2.44 Water 0.76
grain 1.68
used 1.32
heavy 1.28
Treadmills 1.16
attached 0.58
grind 0.29
Water 0.11
TOTAL 11.30 | TOTAL 0.76

Table 1.2: Example list showing the a run of Yarowsky’s aitjon for senses of crane
belonging to (a) TOOLS/MACHINE and (b) ANIMAL/INSECT domas along with
weights of context words. The highlighted sense is the wisease.

1.4 Eye-tracking

For our experiments pertaining to finding out the role of tlmmtext, we used the
eye-tracking device to ascertain the fact that contextudeace is the prime parameter
for human sense annotation as quoted by Chatterjee et aR)20ho used different
annotation scenarios to compare human and machine ammatcesses. An eye
movement experiment was conducted by Vainio et al. (200@x&mine effects of local
lexical predictability on fixation durations and fixatiorchtions during sentence reading.
Their study indicates that local lexical predictabilitylirences in decisions but not where

16



the initial fixation lands in a word.

In another work based on word grouping hypothesis and eyemeits during reading

by Drieghe et al. (2008), the distribution of landing pasit and durations of first fix-

ations in a region containing a noun preceded by either acleadr a high-frequency

three-letter word were compared. In our current work we ysetecking as a tool to

make findings regarding the cognitive processes conneot#itethuman sense disam-
biguation procedure, and to gain a better understandingaritéxtual evidence” which

is of paramount importance for human annotation. Unforteigaour work seems to be

a first of its kind, as to the best of our knowledge we do not kodany such work done

before in the literature.

1.5 Summary of notable Unsupervised WSD approaches

1.5.1 Monolingual WSD

Depending on the type of evidence or knowledge sources esesting algorithms for
monlingual WSD can be classified into two broad categons, knowledge based
approaches and machine learning based approaches. Mésdninimg based approaches
can be further divided into supervised (require sense thggepus), unsupervised
(require untagged corpus) and semi-supervised approgtioegstrap using a small
amount of tagged corpus and a large amount of untagged gorpus

Knowledge based approaches to WSD such as Lesk (1986), WaldeAmsler (1986),
conceptual density by Agirre and Rigau (1996) and randomkwalgorithm by
Rada (2005) essentially do Machine Readable Dictionarkupo However, these are
fundamentallyoverlap basedalgorithms which suffer from overlap sparsity, dictionary
definitions being generally small in length.

Supervised learning algorithms for WSD are mostly word Bpeclassifiers, e.g,
Lee Yoong K. and Chia (2004), Ng and Lee (1996) and YarowsR@4). The require-
ment of a large training corpus renders these algorithmaitaide for resource scarce
languages.

Semi-supervised and unsupervised algorithms do not negd Emount of annotated
corpora, but are again word specific classifierg), semi-supervised decision list al-
gorithm by Yarowsky (1995) and Hyperlex by Veronis (2004)ybirld approaches like
WSD using Structural Semantic Interconnections as showaingli and Velardi (2005)
use combinations of more than one knowledge sources (Worddlevell as a small
amount of tagged corpora). This allows them to capture inapdinformation encoded
in Fellbaum (1998) as well as draw syntactic generalizatfoom minimally tagged cor-
pora. These methods which combine evidence from several resoseesn to be most
suitable in building general purpose broad coverage disguétion engines and are the
motivation for our work.
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1.5.2 Bilingual WSD

The limited performance of monolingual approaches to éelhigh accuracies for all-
words WSD at low costs created interest in bilingual apgneaavhich aim at reducing
the annotation effort. Here again, the approaches can Bsifotal into two categories,
viz,, (i) approaches using parallel corpora and (ii) approadoesising parallel corpora.

The approaches which use parallel corpora rely on the paradif Disambigua-
tion by Translation described in the works of Gale et al. (1992), Dagan and1894),
Resnik and Yarowsky (1999), Ide et al. (2001), Diab and Re&002), Ng et al. (2003),
Tufis et al. (2004), Apidianaki (2008). Such algorithms rely the frequently made
observation that a word in a given source language tendsve diferent translations
in a target language depending on its sense. Given a serdede&ord-aligned parallel
corpus, these different translations in the target languean serve as automatically
acquired sense labels for the source word.

In this work, we are more interested in the second kind of @g@ghes which do not use
parallel corpora but rely purely on the in-domain corporarfrtwo (or more) languages.
For example, Li and Li (2004) proposed a bilingual bootgtrag approach for the more
specific task of Word Translation Disambiguation (WTD) apaged to the more general
task of WSD. This approach does not need parallel corposa (ke our approach) and
relies only on in-domain corpora from two languages. Howgbeir work was evaluated
only on a handful of target words (9 nouns) for WTD as oppogedur work which
focuses on the broader task of all-words WSD.

Another approach worth mentioning here is the one proposed b
Kaji and Morimoto (2002) which aligns statistically sigedint pairs of related words
in languagel.1 with their cross-lingual counterparts in language using a bilingual
dictionary. This approach is based on two assumptions (ipdsvavhich are most
significantly related to a target word provide clues aboet $ense of the target word
and (ii) translations of these related words further raicéathe sense distinctions. The
translations of related words thus act as cross-linguaschor disambiguation. This
algorithm when tested on 60 polysemous words (using Englsdly and Japanese as
L>) delivered high accuracies (coverage=88.5% and precigioin%). However, when
tested in an all-words scenario, the approach performedoekoy the random baseline.
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